

Lesson Learned – 23 Years of Food Waste Acceptance

Royce Hammitt, Wastewater Specialist Manager (retired), Des Moines Metro Wastewater

September 7, 2017

Des Moines Wastewater Reclamation Authority (WRA)

- WRA Serves 17 member agencies in three counties
- City of Des Moines is the contract operator of the WRA's wastewater reclamation facility (WRF)
- Average dry-weather flows of ~67 million gallons per day (MGD)
- Serves ~500,000 residents in greater metro Des Moines area
- Mission Statement Preferred hauled waste facility for Iowa and surrounding areas

Wastewater Reclamation Facility (WRF)

Des Moines WRF Flow Schematic:

HIGH STRENGTH ORGANIC WASTE [HSOW]

Understand Your Need For Energy (Heat and Power)

Electricity Requirement for Typical Activated Sludge Facilities (WEF, 2007)

How CHP Saves Energy

Reciprocating Engine - Heat Balance

WRF Net Energy Cost

Reciprocating EnginesRules - of - Thumb

Capacity Rage (kW)	100 – 500	500 – 2,000		
Electric Generation Efficiency LHV of Fuel (%) Heat Rate (BTU/kWh)	24 - 28 14,000 - 12,000	28 – 38+ 12,000 – 9,000		
Recoverable Useful Heat Hot Water (BTU/h per kW) Steam (lbs/h per kW)	4,000 – 5,000 4 - 5	4,000 – 5,000 4-5		
Installed Cost (\$/kW) (with Heat Recovery)	1,800 – 1,400	1,400 — 1,000		
O & M Costs (\$/kWh)	0.015 - 0.012	0.012 - 0.010		

Gas / Combustion Turbines

(Rules - of - Thumb)

Capacity Rage (kW)	1,000 – 10,000	10,000 - 50,000		
Electric Generation Efficiency LHV of Fuel (%) Heat Rate (BTU/kWh)	24 – 28 14,000 – 12,000	31 – 36 11,000 – 9,500		
Recoverable Useful Heat Hot Water (BTU/h per kW) Steam (lbs/h per kW)	5,000 — 6,000 5 - 6	5,000 — 6,000 5 - 6		
Installed Cost (\$/kW) (with Heat Recovery)	1,500 – 1,000	1,000 – 800		
O & M Costs (\$/kWh)	0.015 -0.012	0.012 - 0.010		
Emission Levels (ppm) NOx (Dry Low NOx) NOx (SCR)	< 25 < 9	< 25 < 9		

Biofuels Co-Digestion Des Moines WRF

- ~67 MGD Primary & Secondary WWTP w/ Anaerobic Digestion
- Receives ~500,000 gal / week of "Hauled-In Waste" for Co-Digestion High Volatile Solids, which makes up > 40-50% of Digester Loading
 - FOG (Brown grease from grease traps)
 - Corn syrup mash from Ethanol Production
 - Glycerin from Biodiesel Production
 - Soybean Oil
 - Sugar Waste
 - Dairy Waste
 - Rendering gelatin
 - Lutein (marigold extract)

Hauled Waste Receiving Upgrades (2007)

Hauled Waste Unloading Facility ~1994

Hauled Waste Unloading Facility Upgraded ~2007

Managing Corrosive & High-Strength Materials

- Corrosive conditions
 - pH, 3.5 to 12
 - -VS, 32 99%, Avg. = 81-percent
 - Temp, 50 200 °F

Oil and Grease, <1,000 – 125,000 mg/L, Avg. 8,600

mg/L

 Highly variable characteristics from each hauled waste load

Hauled Waste Receiving Upgrades (2009)

A Wastewater and Hauled Organic Waste Treatment Center

FACILITY IMPROVEMENTS

WRF Digester Improvements

Digester Covers Evaluated

Submerged Fixed Concrete Covers Selected for Primary Digesters

- Concentrate scum and foam at central point
 - Allows spray suppression to be more effective
 - Large diameter draw-off for rapid removal
- Additional benefits
 - Ease of maintenance
 - Increases tank capacity 8%

Gas Membrane Covers Selected for Secondary Digester

- Allows for variable sludge levels for flexibility in dewatering operational schedule
- Provides biogas storage dampening

Designed with capability to continue to operate

as primary digester

FACILITY CONSTRUCTION

New Submerged Fixed Concrete Covers Required Extensive Support System

Interior Tank Columns Used to Support the Concrete Cover

PERFORMANCE METRICS

Anaerobic Digester Hydraulic Residence Time (HRT)

Blended Sludge Feed – Volatile Solids Loading

Volatile Solids Reduction

Average Biogas Production Rate

2009 vs. 2014: VS Loading & Biogas Production

CONCLUSIONS

Conclusions

- Collect data, flow, temperature, waste characteristics, etc.
- Food wastes are an excellent digester feedstock
- Co-digestion of food wastes is a proven way to increase energy production
 - 5% increase in VS Loading and a 25% increase in biogas production
- Know your energy needs and energy production potential. Recognize that these are rarely in balance
- Utilize existing infrastructure where possible
- Plan for change keep a list of prioritized improvements

For More Information

Co-Digestion of Organic Waste Products
with Wastewater Solids
INTERIM REPORT

WWERF

Table 2-6. Gas Production and Yield as a Function of COD Removal.

	Feed	Volume (ml)	COD (mg/ml)	COD Fed (mg)	Digested Sludge COD (mg/ml)	Digested Sludge COD (mg)	COD Removed (mg)	Biogas Volume Increase (ml)	Yield (ml Gas/mg COD _r)	% of Theoretical Biogas Production
11	Co- thickened Sludge	5	95	475	34	170	305	110	0.36	58%
Round 1	Canola Oil	0.053	1790	570	34	172	398	165	0.41	67%
	Restaurant Grease	0.205	463	570	33.2	172	398	223	0.56	90%

Acknowledgements

 Larry Hare, Jim Buck, James Beck, Scott Hutchens, and all WRA operations and maintenance staff

- Dustin Smith, P.E., CDM Smith
- Scott Carr, P.E., Black & Veatch

QUESTIONS / DISCUSSION

Royce Hammitt roycehammitt@gmail.com