

#### **Challenges with Anaerobic Digestion**



#### **Challenges with Anaerobic Digestion**



- Buying a Biogas plant
- Running a successful Biogas Plant

Anaerobic Digestion Feedstock

#### **Anaerobic Digestion Basics**

Technological Fit with Food Recovery?





#### **Anaerobic Digestion Basics**

What are we really talking about?





## So what do we feed digesters?



#### Feedstock:



#### What's Good?

- Undigested fats, proteins, carbohydrates = Gas
- Pre-established bacteria cultures
- Minerals for nutrients and buffering capacity
- Plentiful and consistent
- Fresh = Best
- Delivered = preferred



#### Feedstock:

#### What's not as good?

- Overly dried or composted manure loss of VS "Other Stuff" that's not digestible:
  - Too much water, sand, rocks, rope, etc..
  - Plastic separation requires equipment and labor to manage
  - Dry Manure "Reject" Handling



#### **Anaerobic Digestion Basics**

#### Whose on the market?

GHD: meso plug and mix combo in-ground



Biogas Nord: continuous meso mix

RCM
Kompoferm
UTS Biothane
CH-Four
Ecovation
MT-Energie
Entec biogas



Eisenmann: plug flow



**BIOFerm**: Dry Fermentation, Plug flow, CSTR, Compact







#### **Common Misperceptions in the Industry**

- AD reduces waste
- AD reduces phosphorus
- AD has no odor
- Low maintenance





#### **Waste Management and Energy Creation Across Sectors**



**Municipal Solid** Waste



**Wastewater** 



**Industrial** 



### **Municipal Solid Waste**

A typical case...

#### Cost:

- \$28m
- OP-EX estimated \$450,000/yr
- Payback (?)

#### Feedstock:

- 40,000 metric tons/year high-solids organic waste
  - Municipal solid waste
  - Source Separated organics from industrial, commercial, and institutional waste sectors
  - Yard Waste

#### Average Annual Energy Production:

- 12.5 Million kWh electrical
- 45,300 MMBTU thermal

#### Biogas Produced:

60 Million scf

#### **Emissions Reduced:**

46,000 metric tons CO<sub>2</sub>/year

Where does a project make financial sense?



**Tipping Fees (\$/ton)** 

| State             | High  | Low  | Avg  |
|-------------------|-------|------|------|
| Washington        | \$142 | \$28 | \$70 |
| Maine             | \$115 | \$72 | \$91 |
| Pennsylvania      | \$103 | \$63 | \$76 |
| New York State    | \$102 | \$49 | \$86 |
| Wyoming           | \$102 | \$35 | \$60 |
| Massachusetts     | \$100 | \$60 | \$78 |
| <b>US Average</b> |       |      | \$50 |



#### **Wastewater Treatment & Industrial**

#### A typical case...

#### Cost:

- Phase 1 \$7 million
- Phase 2 \$32 million
- Opex (?)
- Payback (?)

#### Feedstock:

- 7,000 dry tons biosolids/year
- 15,000 dry tons biosolids/ year

Average annual energy production:

- 3 Million kWh electrical
- 11,796 MMBTU thermal
- 47,733,850 ft³ biogas at 55% CH<sub>4</sub>



### **Agricultural**

A typical case...

#### Cost:

- \$7 million
- \$864,000/ year
- Payback (?)

#### Herd Size:

9,000 dairy cows

#### **Processing Capacity:**

350 tons of manure/day

#### Average annual energy production:

- 11-12.5 Million kWh electrical
- 45,300 MMBTU thermal
- 165,000,000 ft<sup>3</sup> of biogas

#### **Emissions Reduced:**

44,602 metric tons CO<sub>2</sub>/year



## A closer look into Municipalities: Waste-to-Energy



#### **PFD of Municipal Process**





#### **MSW Collection Considerations**

- Collection
  - Single-Stream
  - Residential Separation
  - Frequency
- Residence Times
- Hauling Distances







## Typical MSW Generation (Before Recycling/Diversion)



| • Paper                             | 27.4% |
|-------------------------------------|-------|
| Food Waste                          | 14.5% |
| Yard Waste                          | 13.5% |
| <ul> <li>Plastics</li> </ul>        | 12.7% |
| <ul> <li>Metals</li> </ul>          | 8.9%  |
| <ul> <li>Rubber/Textiles</li> </ul> | 8.7%  |
| • Wood                              | 6.3%  |
| <ul> <li>Glass</li> </ul>           | 4.6%  |
| <ul><li>Other</li></ul>             | 3.4%  |



#### **Waste Characterization**

#### Waste Constituents

- Contamination
- Physical properties

#### Laboratory Testing

- Total & Volatile Solids
- Biogas & Methane Potential





#### **Pre-Processing Considerations**



- Debaggers
- Shredders
- Magnets
- Trommels









#### **Digestor Considerations**

- Dry Fermentation
- CTSR
- Plug Flow









#### **Post processing Considerations**

- Digestate end use- adding value
- Handling Solid vs. Liquid waste
- Capturing nutrients



#### **High-Solids AD- Non-Pumpable Materials**



#### **Anaerobic Digestion - Non-Pumpable Materials**





# What to consider when interested in buying a Biogas Plant



## Is bigger always better?





#### A Comparison of European to US AD Application

A Tale of Two Policy-driven Markets



## **Buying a Biogas Plant:** Feedstock

#### Germany:

- Majority of feedstock is energy crops (e.g. corn and grass) and manure
- Well known and highly consistent substrates
- About 20% of plants run on municipal organic waste



- Growing biomass not widely accepted (food vs. fuel debate)
- Use waste streams, e.g. manure, source separated organics
- Potential lies with source separated organics (34 million tons of food waste per year, only 2.5% is currently recycled)





## **Buying a Biogas Plant:** Economics

#### Germany:

- Electricity prices are higher compared to US
- Renewable energy is subsidized
- Biogas market competition is high, keeping technology prices competitive
- Time to payback, even for a small farm based system, is relatively short



- Electricity prices are low
- Renewable energy incentives: 30% tax grant/credit, other incentives vary from state to state
- Payback times are longer
- Collecting tip fee for organic waste will positively influence economics





## **Buying a Biogas Plant:** Product Sales

#### Germany:

■ Erneubare Energien Gesetz (EEG), Renewable Energy Law, revised in 2009 regulates feed-in tariffs for all renewable energy technologies, guaranteed for 15 – 20 years

#### Example Biogas:

| 0.1167 € |
|----------|
| 0.07 €   |
| 0.04 €   |
| 0.02 €   |
|          |

■ Total: 0.2467 €

■ Retail Cost: Around 0.25 €kWh

- Has no country wide feed-in tariff
- Few states (e.g. Hawaii) have adopted them, but don't necessarily include biomass/biogas
- Each biogas client has to negotiate their own Power Purchase Agreement with their utility





## **Buying a Biogas Plant:** Financing

#### Germany:

Financial instruments exist to finance biogas plants:

- Project economics clearly defined
- Proven application of technology
- Standard safety certification of plant technology (TÜV)
- Risk assessment is quantified by DIN standards

#### USA:

No defined financial instruments exist to finance biogas plants:

- Project economics do not follow a set model
- Unproven technical track record in the US
- Standard safety certification does not exist
- Risk assessments based on foreign data





## **Buying a Biogas Plant: Permitting**

#### Germany:

- Federal standards:
  - BlmSchG: Federal Emission Control Law
  - EG-Hygiene VO: European Hygiene Regulation for animal products
  - TA Luft: Technical Instructions for Emission Control
  - TA Lärm: Technical Instructions for Noise Control
  - DMG: Fertilizer Law
  - BioAbfVO: Municipal Organic Waste Regulation
- Safety and expert reports available (TÜV)
- Permitted per component unit, e.g. digester tank, biofilter
- Over 5000 plants permitted

- No federal standards
- No standard safety certifications
- State standards for emissions (CHP emissions), differ from state to state
- Building codes vary from one state to another









## **Challenges with Anaerobic Digestion Decision Checklist**

- Who is designing your biogas plant? What is their experience in the local market?
- What is the financial strength of the company that is selling you a system? How committed are they to the market in your country?
- How many engineers, support staff etc. are located in your market?
- Who is guaranteeing that the system will work through the initial warranty and long term operation?



**S**lide

## Challenges with Anaerobic Digestion Decision Checklist

- Who is guaranteeing that your feedstock will produce the stated amount of biogas?
- Who provides ongoing biological support for your biogas plant? Are long term service contracts available?
- Who provides ongoing technical support and service locally?
- What kind of lead time can you expect and tolerate for replacement parts?



## **Challenges with Anaerobic Digestion Conclusions**

- –Careful selection of technology provider. Must have a good track record
- AD is a complex biological system, and adequate training of operational personnel is required
- -There is no "one size fits all" because feedstocks will differ on a case by case basis, and this has to be taken into account during the design and operation of the system





across a variety of sectors. We hope to provide the tools for industries to make the most of the resources within their reach-

because nothing is waste until you waste it.